If  the number of terms in the expansion  of ${\left( {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} \right)^n},x \ne 0$ is $28$ then the sum of the coefficients of all the terms in this expansion, is :

  • [JEE MAIN 2016]
  • A

    $243$

  • B

    $729$

  • C

    $64$

  • D

    $2187$

Similar Questions

In the expansion of

$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ find the coefficient of $x^{12}$ is :-

Let $\left( a + bx + cx ^2\right)^{10}=\sum \limits_{ i =0}^{20} p _{ i } x ^{ i }, a , b , c \in N$. If $p _1=20$ and $p _2=210$, then $2( a + b + c )$ is equal to

  • [JEE MAIN 2023]

If the sum of the coefficients in the expansion of ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ vanishes, then the value of $\alpha $ is

  • [IIT 1991]

The value of $\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ is

$\frac{1}{{1!(n - 1)\,!}} + \frac{1}{{3!(n - 3)!}} + \frac{1}{{5!(n - 5)!}} + .... = $